Aggregating Forecasts of Chance from Incoherent and Abstaining Experts
نویسندگان
چکیده
Decision makers often rely on expert opinion when making forecasts under uncertainty. In doing so, they confront two methodological challenges: the elicitation problem, which requires them to extract meaningful information from experts; and the aggregation problem, which requires them to combine expert opinion by resolving disagreements. Linear averaging is a justifiably popular method for addressing aggregation, but its robust simplicity makes two requirements on elicitation. First, each expert must offer probabilistically coherent forecasts; second, each expert must respond to all our queries. In practice, human judges (even experts) may be incoherent, and may prefer to assess only the subset of events about which they are comfortable offering an opinion. In this paper, a new methodology is developed for combining expert assessment of chance. The method retains the conceptual and computational simplicity of linear averaging, but generalizes the standard approach by relaxing the requirements on expert elicitation. The method also enjoys provable performance guarantees, and in experiments with real-world forecasting data is shown to offer both computational efficiency and competitive forecasting gains as compared to rival aggregation methods. This paper is relevant to the practice of decision analysis, for it enables an elicitation methodology in which judges have freedom to choose the events they assess.
منابع مشابه
Aggregating Forecasts of Chance from Incoherent and Abstaining Experts
Linear averaging is a popular method for combining forecasts of chance, but it is of limited use in the context of incoherent or abstaining judges. Recently proposed, the coherent approximation principle (CAP) generalizes linear averaging to have wider applicability yet suffers from computational intractability in cases of interest. This paper proposes a unified framework that views CAP and lin...
متن کاملAggregating Probabilistic Forecasts from Incoherent and Abstaining Experts
D makers often rely on expert opinion when making forecasts under uncertainty. In doing so, they confront two methodological challenges: the elicitation problem, which requires them to extract meaningful information from experts; and the aggregation problem, which requires them to combine expert opinion by resolving disagreements. Linear averaging is a justifiably popular method for addressing ...
متن کاملAggregating disparate estimates of chance
We consider a panel of experts asked to assign probabilities to events, both logically simple and complex. The events evaluated by different experts are based on overlapping sets of variables but may otherwise be distinct. The union of all the judgments will likely be probabilistic incoherent. We address the problem of revising the probability estimates of the panel so as to produce a coherent ...
متن کاملAggregating Large Sets of Probabilistic Forecasts by Weighted Coherent Adjustment
Probability forecasts in complex environments can benefit from combining the estimates of large groups of forecasters (“judges”). But aggregating multiple opinions faces several challenges. First, human judges are notoriously incoherent when their forecasts involve logically complex events. Second, individual judges may have specialized knowledge, so different judges may produce forecasts for d...
متن کاملLong-Term Sequential Prediction Using Expert Advice
For the prediction with expert advice setting, we consider methods to construct forecasting algorithms that suffer loss not much more than any of experts in the pool. In contrast to the standard approach, we investigate the case of long-term interval forecasting of time series, that is, each expert issues a sequence of forecasts for a time interval ahead and the master algorithm combines these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008